An Introduction to the Sato-Tate Conjecture

Edray Herber Goins
Department of Mathematics
Pomona College

Algebra / Number Theory / Combinatorics Seminar
Claremont Colleges

October 2, 2018
Abstract

In 1846, Ernst Eduard Kummer conjectured a distribution of values of a cubic Gauss sum after computing a few values by hand. This was forgotten about for nearly 100 years until John von Neumann and Herman Goldstine attempted to verify the conjecture as a way to test the new ENIAC machine in 1953. They found evidence that the conjecture was false, but trusted Kummer more than they did their digital computer. The conjecture would hold until 1979, when Roger Heath-Brown and Samuel Patterson proved it to be false.

A few years earlier in 1965, Mikio Sato and John Tate independently came up with a conjecture which gave the correct distribution of these cubic Gauss sums – although it was expressed slightly differently in terms of counting points of elliptic curves over finite fields. In this talk, we give an overview of the Sato-Tate Conjecture, present an approach by Jean-Pierre Serre following his paper from 1967, then sketch the 2006 proof of the conjecture following the ideas of Laurent Clozel, Michael Harris, Nicholas Shepherd-Barron and Richard Taylor.
Outline of Talk

1. History
 - Gauss’s Theorem
 - Kummer’s Conjecture
 - Heath-Brown and Patterson’s Theorem

2. Sato-Tate Conjecture
 - Elliptic Curves
 - Galois Representations
 - Haar Measures on Unitary Groups

3. Representations of $SU_2(\mathbb{C})$
 - Peter-Weyl Theorem
 - Wiener-Ikehara Theorem
 - Langlands Functoriality
Gauss’s Theorem

Theorem (Carl Friedrich Gauss, 1798)

Consider the Fermat curve $\mathcal{F}_3 : a^3 + b^3 + c^3 = 0$.

- If either $p = 3$ or $p \equiv 2 \pmod{3}$, then $\#\mathcal{F}_3(\mathbb{F}_p) = p + 1$.
- If $p \equiv 1 \pmod{3}$, then there exist integers a_p and b_p such that

$$\#\mathcal{F}_3(\mathbb{F}_p) = p + 1 - a_p \quad \text{and} \quad 4p = a_p^2 + 27b_p^2.$$
Gauss’s Theorem

Corollary

Consider the elliptic curve \(E : y^2 - y = x^3 - 7 \). For all primes \(p \neq 3 \),

\[
(\sqrt{p} - 1)^2 \leq \#E(\mathbb{F}_p) \leq (\sqrt{p} + 1)^2.
\]

Proof. We have a bijection

\[
\mathcal{F}_3 : a^3 + b^3 + c^3 = 0 \quad \rightarrow \quad E : y^2 - y = x^3 - 7
\]

\[
(a : b : c) \quad \mapsto \quad (-3c : -4a + 5b : a + b)
\]

Hence

\[
p + 1 - \#E(\mathbb{F}_p) = a_p = \begin{cases}
0 & \text{if } p \equiv 2 \pmod{3}, \\
\pm \sqrt{4p - 27b_p^2} & \text{if } p \equiv 1 \pmod{3}.
\end{cases}
\]

In either case we have \(|p + 1 - \#E(\mathbb{F}_p)| \leq 2\sqrt{p}|.
First assume that \(p \equiv 2 \pmod{3} \). We have a bijection

\[
P^1(\mathbb{F}_p) \rightarrow \left\{ (a : b : c) \in P^2(\mathbb{F}_p) \, \middle| \, a^3 + b^3 + c^3 = 0 \right\}
\]

\[
(\alpha : \beta) \mapsto \left(-\alpha : -\beta : (\alpha^3 + \beta^3)^{(2p-1)/3}\right)
\]

Now assume \(p \equiv 1 \pmod{3} \). There exists a nontrivial cubic character \(\chi_p : \mathbb{F}_p^\times \rightarrow \mathbb{C}^\times \). Upon setting \(\chi_p(0) = 0 \), define the \textit{Gauss sum}

\[
\tau(\chi_p) = \sum_{\alpha \in \mathbb{F}_p} \chi_p(\alpha) \zeta_p^\alpha = -e^{i\theta_p/3} \sqrt{p}
\]

for some angle \(\theta_p \). Note that for any \(\alpha \in \mathbb{F}_p \), we have the formula

\[
\# \left\{ a \in \mathbb{F}_p \, \middle| \, a^3 = \alpha \right\} = 1 + \chi_p(\alpha) + \chi_p(\alpha)^2.
\]
Proof of Gauss’s Theorem

Now define **Jacobi sum** as

\[
J(\chi_p, \chi_p) = \sum_{\alpha + \beta = 1} \chi_p(\alpha) \chi_p(\beta) = \frac{\tau(\chi_p)^2}{\tau(\chi_p^2)} = -e^{i\theta_p} \sqrt{p}.
\]

Writing \(J(\chi_p, \chi_p) = c_p + d_p \zeta_3\), we have \(|J(\chi_p, \chi_p)|^2 = c_p^2 - c_p d_p + d_p^2\).

Choose the rational integers

\[
\begin{align*}
 a_p &= d_p - 2c_p \\
 b_p &= d_p/3
\end{align*}
\]

\[
\begin{align*}
 4p &= a_p^2 + 27b_p^2 \\
 a_p &\equiv 2 \pmod{3}
\end{align*}
\]

Finally, count the number of points:

\[
\#\mathcal{F}_3(\mathbb{F}_p) = 3 + \sum_{\alpha + \beta = 1} \# \left\{ a \in \mathbb{F}_p \left| a^3 = \alpha \right. \right\} \times \# \left\{ b \in \mathbb{F}_p \left| b^3 = \beta \right. \right\}
\]

\[
= p + 1 + J(\chi_p, \chi_p) + J(\chi_p^2, \chi_p^2)
\]

\[
= p + 1 - a_p.
\]
Conjecture (Ernst Eduard Kummer, 1846)

For each rational prime $p \equiv 1 \pmod{3}$, consider the cubic Gauss sum as

$$
\tau_p = \sum_{\alpha \in \mathbb{F}_p} \zeta_p \alpha^3 = \tau(\chi_p) + \tau(\chi_p^2) = -2\sqrt{p} \cos \frac{\theta_p}{3}.
$$

Then $(1 : 2 : 3)$ is the proportion of p for which τ_p lies in the intervals

$$
[-2\sqrt{p}, -\sqrt{p}], \quad [-\sqrt{p}, \sqrt{p}], \quad \text{and} \quad [\sqrt{p}, 2\sqrt{p}].
$$

Recall that

$$
2 \cos \theta_p = -\frac{J(\chi_p, \chi_p) + J(\chi_p^2, \chi_p^2)}{\sqrt{p}} = \frac{a_p}{\sqrt{p}}.
$$
Verification of Kummer’s Conjecture?

KummerClass[p_Integer] :=
Round[
 (1 + 2 Sum[Cos[(2 Pi n^3)/p], {n, (p-1)/2}]) / (2 Sqrt[p])
]

KummerHistogram[bound_Integer] := Module[{pmod3, class},

 pmod3 = Select[
 Table[Prime[n], {n, PrimePi[bound]}],
 Mod[#,3]==1&];

 class = Table[KummerClass[pmod3[[n]]], {n, Length[pmod3]}];

 Return[Histogram[
 class, Automatic, "Probability",
 PlotRange -> {{-1,2}, {0.0,0.6}}, Axes -> {False,True}]]
]
Verification of Kummer’s Conjecture?

Proposition (Ernst Eduard Kummer, 1846)

45 primes \(p \leq 500 \) with \((7 : 14 : 24) \approx (1 : 2 : 3) \)
Verification of Kummer’s Conjecture?

Proposition (John von Neumann and Herman Goldstine, 1953)

611 primes $p \leq 10,000$ with $(138 : 201 : 272) \approx (2 : 3 : 4)$
Verification of Kummer’s Conjecture?

Proposition (Emma Lehmer, 1956)

1000 primes $p \leq 17550$ with $(240 : 322 : 438) \approx (3 : 4 : 5)$
Verification of Kummer’s Conjecture?

Proposition (Carl-Erik Fröberg, 1974)

8,988 primes $p \leq 200,000$ with $(2370 : 2990 : 3628) \approx (4 : 5 : 6)$
Conjecture (Ernst Eduard Kummer, 1846)

For each rational prime $p \equiv 1 \pmod{3}$, consider the cubic Gauss sum as

$$
\tau_p = \sum_{\alpha \in \mathbb{F}_p} \zeta_p \alpha^3 = \tau(\chi_p) + \tau(\chi_p^2) = -2\sqrt{p} \cos \frac{\theta_p}{3}.
$$

Then $(1 : 2 : 3)$ is the proportion of p for which τ_p lies in the intervals

$$
[-2\sqrt{p}, -\sqrt{p}], \quad [\sqrt{p}^2, \sqrt{p}], \quad \text{and} \quad [\sqrt{p}, 2\sqrt{p}].
$$

Theorem (Roger Heath-Brown and Samuel Patterson, 1979)

Kummer’s conjecture is false: the angles θ_p defined by $2 \cos \theta_p = \frac{a_p}{\sqrt{p}}$

are equidistributed in $[0, \pi]$ with respect to the measure $d\mu = \frac{1}{\pi} d\theta$.
Falsification of Kummer’s Conjecture!

Histogram of

$$\theta_p = \cos^{-1} \frac{p + 1 - \#\mathcal{F}_3(\mathbb{F}_p)}{2\sqrt{p}}$$

for $$p \leq 1\,000\,000$$
Can we generalize this?

- Inequality:
 \[(\sqrt{p} - 1)^2 \leq \#E(\mathbb{F}_p) \leq (\sqrt{p} + 1)^2.\]

- Angle:
 \[\frac{a_p}{\sqrt{p}} = 2 \cos \theta_p \quad \text{in terms of} \quad a_p = p + 1 - \#E(\mathbb{F}_p).\]

- “Equidistributed”?
Given a field \(k \), consider the equation

\[
E : \quad y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.
\]

Define the following constants as elements of \(k \):

\[
c_4 = a_4^4 + 8 a_1^2 a_2 + 16 a_2^2 - 24 a_1 a_3 - 48 a_4
\]

\[
c_6 = -a_1^6 - 12 a_1^4 a_2 - 48 a_1^2 a_2^2 - 64 a_2^3 + 36 a_1^3 a_3
\]

\[
+ 144 a_1 a_2 a_3 - 216 a_3^2 + 72 a_1^2 a_4 + 288 a_2 a_4 - 864 a_6
\]

\[
\Delta(E) = -a_1^4 a_2 a_3^2 - 8 a_1^2 a_2^2 a_3 - 16 a_2^3 a_3 + a_1^3 a_3^3 + 36 a_1 a_2 a_3^3
\]

\[
- 27 a_3^4 + a_1^5 a_3 a_4 + 8 a_1^3 a_2 a_3 a_4 + 16 a_1 a_2^2 a_3 a_4
\]

\[
- 30 a_2^2 a_3 a_4 + 72 a_2 a_3^2 a_4 + a_1^4 a_2^2 a_4 + 8 a_1^2 a_2 a_4^2
\]

\[
+ 16 a_2 a_4^2 - 96 a_1 a_3 a_4^2 - 64 a_4^3 - a_1^6 a_6 - 12 a_1^4 a_2 a_6
\]

\[
- 48 a_1^2 a_6 - 64 a_2^3 a_6 + 36 a_1^3 a_3 a_6 + 144 a_1 a_2 a_3 a_6
\]

\[
- 216 a_3^2 a_6 + 72 a_1^2 a_4 a_6 + 288 a_2 a_4 a_6 - 432 a_6^2
\]
Elliptic Curves

Given a field \(k \), consider the equation

\[
E : \quad y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.
\]

If \(k \) has characteristic different from 2 and 3, we may write

\[
E : \quad y^2 = x^3 - \frac{3}{12^2} c_4 x - \frac{2}{12^3} c_6 \quad \text{and} \quad \Delta(E) = \frac{c_4^3 - c_6^2}{12^3}.
\]

We say \(E \) is an elliptic curve defined over \(k \) if \(\Delta(E) \neq 0 \). We will focus on the collection of \(k \)-rational points

\[
E(k) = \left\{ (x_1 : x_2 : x_0) \in \mathbb{P}^2(k) \left| \begin{array}{c}
x_2^2 x_0 + a_1 x_1 x_2 x_0 + a_3 x_2 x_0^2 \\
= x_1^3 + a_2 x_1^2 x_0 + a_4 x_1 x_0^2 + a_6 x_0^3
\end{array} \right. \right\}
\]

having a specified base point \(O = (0 : 1 : 0) \). Define the \(j \)-invariant as

\[
j(E) = \frac{c_4^3}{\Delta(E)} = 12^3 \frac{c_4^3}{c_4^3 - c_6^2}.
\]
Let \(P, Q \in E(k) \). Denote \(P \ast Q \) as the point of intersection of \(E \) and the line through \(P \) and \(Q \), and denote \(P \oplus Q = (P \ast Q) \ast O \).

Theorem (Henri Poincaré, 1901)

Consider an elliptic curve \(E \) defined over a field \(k \). Then \((E(k), \oplus)\) is an abelian group with identity \(O = (0 : 1 : 0) \) and inverses \([-1]P = P \ast O\).
Properties of Elliptic Curves

Consider an elliptic curve E defined over a field k. Recall the following:

- The ℓ-adic Tate module is the finite dimensional \mathbb{Q}_ℓ-vector space

$$V_\ell(E) = \left(\varprojlim_n E[\ell^n] \right) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$$

in terms of the torsion subgroup $E[m] = \{ P \in E(\overline{k}) \mid [m]P = \mathcal{O} \}$.

- There exist embeddings as \mathbb{Z}-algebras

$$\mathbb{Z} \left[\text{Gal} (\overline{k}/k) \right] \hookrightarrow \text{End}(E) \hookrightarrow \text{End}(V_\ell(E)).$$

- Viewing $\sigma \in \text{Gal}(\overline{k}/k) \hookrightarrow GL(V_\ell(E))$, define the degree as

$$\text{deg}(\sigma) = \left[k(E) : \sigma^* k(E) \right] = \det(\sigma).$$

- If $\sigma \in \text{End}(E)$ has $\text{deg}(\sigma) = m$, there exists $\hat{\sigma} \in \text{End}(E)$ such that

$$\sigma \circ \hat{\sigma} = \hat{\sigma} \circ \sigma = [m].$$
Hasse Inequality

Theorem (Helmut Hasse, 1934)

Consider an elliptic curve E defined over a field k.

- **The pairing** $tr : \text{End}(E) \times \text{End}(E) \to \mathbb{Z}$ **defined by**

 $$tr(\sigma, \sigma') = \deg(\sigma + \sigma') - \deg(\sigma) - \deg(\sigma') = \sigma \circ \hat{\sigma}' + \hat{\sigma} \circ \sigma'$$

 is a positive definite quadratic form.

- Assume that $k = \mathbb{F}_p$. **The polynomial** $Q : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ **defined by**

 $$Q(x, y) = \deg(x - \sigma_p y) = x^2 - a_p x y + p y^2$$

 in terms of the trace $a_p = p + 1 - \#E(\mathbb{F}_p) = \sigma_p + \hat{\sigma}_p$ **implies**

 $$\left(\sqrt{p} - 1\right)^2 \leq \#E(\mathbb{F}_p) \leq \left(\sqrt{p} + 1\right)^2.$$
Corollary

Consider an elliptic curve E defined over $k = \mathbb{F}_p$.

- (Rationality) With $\alpha_p, \beta_p = (a_p \pm i \sqrt{4p - a_p^2})/2$, we have

 \[\alpha_p + \beta_p = a_p \quad \text{and} \quad \#E(\mathbb{F}_p) = p^n + 1 - \alpha_p^n - \beta_p^n. \]

 In particular, we have the identity

 \[\zeta_{E/\mathbb{F}_p}(s) = \exp \left[\sum_{n=1}^{\infty} \#E(\mathbb{F}_p^n) \frac{1}{n p^{ns}} \right] = \frac{1 - a_p p^{-s} + p^{1-2s}}{(1 - p^{-s})(1 - p^{1-s})}. \]

- (Riemann Hypothesis) If $\zeta_{E/\mathbb{F}_p}(s) = 0$ then $\text{Re}(s) = 1/2$.

- (Functional Equation) If $\zeta_{E/\mathbb{F}_p}(1-s) = \zeta_{E/\mathbb{F}_p}(s)$.
\(\ell\)-adic Galois Representation of an Elliptic Curve

Consider an elliptic curve \(E\) defined over \(k = \mathbb{Q}\). Assume moreover that \(E\) is defined over \(\mathbb{Z}\), and \(\ell\) is a prime which does not divide \(\Delta(E)\).

- By considering the continuous action of the absolute Galois group on the \(\ell\)-adic Tate module, we have a continuous representation

\[\rho_{E,\ell} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{Q}_\ell). \]

- For every prime \(p\), we have a short-exact sequence

\[\{1\} \to I_p \to \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \to \{1\}. \]

As long as \(p \nmid \ell \cdot \Delta(E)\), the inertia group \(I_p\) acts trivially on \(V_\ell(E)\).

\[
\text{tr} \rho_{E,\ell}(\sigma_p) = \alpha_p + \beta_p = a_p
\]

\[
\text{det} \rho_{E,\ell}(\sigma_p) = \alpha_p \cdot \beta_p = p
\]

- Using the Hasse Inequality, we can write

\[\alpha_p = e^{+i\theta_p} \sqrt{p} \]

\[\beta_p = e^{-i\theta_p} \sqrt{p} \quad \implies \quad \frac{a_p}{\sqrt{p}} = 2 \cos \theta_p. \]
Theorem

Consider an elliptic curve E defined over $k = \mathbb{Q}$. There exists a normalized continuous complex Galois representation

$$\rho^{(2)}_E : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to SU_2(\mathbb{C})$$

in terms of the special unitary group

$$SU_2(\mathbb{C}) = \left\{ g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(\mathbb{C}) \Bigg| a d - b c = 1, g^{-1} = \begin{bmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{bmatrix} \right\}$$

such that for almost all primes p the image of the Frobenius element is

$$g_p = \frac{1}{\sqrt{p}} \cdot \rho_{E,\ell}(\sigma_p) \sim \begin{bmatrix} e^{i\theta_p} & 0 \\ 0 & e^{-i\theta_p} \end{bmatrix} \implies \text{tr } g_p = 2 \cos \theta_p = \frac{a_p}{\sqrt{p}}.$$
Are the traces “equidistributed”?
$X_0(27) : y^2 - y = x^3 - 7$

$\Delta(E) = -3^9$ and $j(E) = 0$
$X_0(27) : y^2 - y = x^3 - 7$

$\Delta(E) = -3^9 \quad \text{and} \quad j(E) = 0$
$X_0(11) : \ y^2 - y = x^3 - x^2 - 10x - 20$

$\Delta(E) = -11^5$ and $j(E) = -\frac{2^{12} \cdot 31^3}{11^5}$
An Introduction to the Sato-Tate Conjecture

$X_0(11)/\mathbb{C} : y^2 + xy + y = x^2 + x^2 - 305x + 7888$

$\Delta(E) = -11^{10}$ and $j(E) = -11^2$
Conjecture (Mikio Sato and John Tate, 1965)

Consider an elliptic curve E defined over $k = \mathbb{Q}$ without complex multiplication. Then the angles θ_p defined by $2 \cos \theta_p = \frac{a_p}{\sqrt{p}}$ are equidistributed in $[0, \pi]$ with respect to the measure $d\mu = \frac{2}{\pi} \sin^2 \theta \, d\theta$.

That is, for any integrable function $F : [0, \pi] \rightarrow \mathbb{C}$, we have the limit

$$
\lim_{X \rightarrow \infty} \frac{\sum_{p \leq X} F(\theta_p)}{\sum_{p \leq X} 1} = \frac{2}{\pi} \int_0^\pi F(\theta) \sin^2 \theta \, d\theta.
$$

The Prime Number Theorem asserts that

$$
\pi(X) = \sum_{p \leq X} 1 \approx \frac{X}{\log X} \approx \int_2^X \frac{dt}{\log t}.
$$
Proposition

Define the special unitary group

\[SU_2(\mathbb{C}) = \left\{ g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{GL}_2(\mathbb{C}) \mid a d - b c = 1, \quad g^{-1} = \begin{bmatrix} \frac{1}{b} & \frac{1}{d} \\ \frac{1}{c} & \frac{1}{d} \end{bmatrix} \right\} . \]

- \(SU_2(\mathbb{C}) \cong U_1(\mathbb{H}) \) as groups, and \(SU_2(\mathbb{C}) \cong S^3(\mathbb{R}) \) as manifolds.

- There is a normalized measure \(\mu \) on \(SU_2(\mathbb{C}) \) such that for any integrable function \(G : [-2, 2] \rightarrow \mathbb{C} \) we have the integral

\[
\int_{SU_2(\mathbb{C})} G(\text{tr} \, g) \, d\mu = \frac{2}{\pi} \int_0^\pi G(2 \cos \theta) \sin^2 \theta \, d\theta.
\]
Consider an elliptic curve E defined over $k = \mathbb{Q}$ without complex multiplication, and denote the normalized continuous complex Galois representation $\rho_E^{(2)} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to SU_2(\mathbb{C})$ which sends $\sigma_p \mapsto g_p$.

As $\text{tr} \ g_p = 2 \cos \theta_p$, for any integrable class function

\[\chi : SU_2(\mathbb{C}) \xrightarrow{\text{tr}} [-2, 2] \xrightarrow{G} \mathbb{C} \]

we have the limit

\[\lim_{X \to \infty} \frac{\sum_{p \leq X} \chi(g_p)}{\sum_{p \leq X} 1} = \int_{SU_2(\mathbb{C})} \chi(g) \, d\mu. \]
Proof of Proposition

By the definition of the special unitary group,

\[
g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SU_2(\mathbb{C}) \iff |a|^2 + |b|^2 = 1, \quad \overline{a}c + \overline{b}d = 0 \]

\[
|c|^2 + |d|^2 = 1, \quad ad - bc = 1
\]

From the latter two identities

\[
\begin{align*}
\overline{a}c + \overline{b}d &= 0 \\
ad - bc &= 1
\end{align*}
\]

\[
\iff c = -\frac{\overline{b}}{|a|^2 + |b|^2}, \quad d = \frac{\overline{a}}{|a|^2 + |b|^2}.
\]

We have the well-known result

\[
g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SU_2(\mathbb{C}) \iff g = \begin{bmatrix} a & b \\ -\overline{b} & \overline{a} \end{bmatrix}
\]

where \(|a|^2 + |b|^2 = 1|.

Proof of Proposition

\[a = \frac{x + iy}{2} \quad \Rightarrow \quad x = r \cos \theta \]
\[b = \frac{z + iw}{2} \quad \Rightarrow \quad y = r \sin \theta \cos \varphi \]
\[z = r \sin \theta \sin \varphi \cos \phi \]
\[w = r \sin \theta \sin \varphi \sin \phi \]

where
\[0 \leq r \]
\[0 \leq \theta \leq \pi \]
\[0 \leq \varphi \leq \pi \]
\[0 \leq \phi \leq 2\pi \]

The Jacobian of this change of variables is

\[dx \, dy \, dz \, dw = (r^3 \sin^2 \theta \sin \varphi) \, dr \, d\theta \, d\varphi \, d\phi \]

so we have a normalized measure on $SU_2(\mathbb{C})$ defined by

\[d\mu = \frac{\sin^2 \theta \sin \varphi}{2\pi^2} \, d\theta \, d\varphi \, d\phi. \]

Noting that $\text{tr} \, g = x = 2 \cos \theta$ for $r = 2$, we have the integral

\[\int_{SU_2(\mathbb{C})} G(\text{tr} \, g) \, d\mu = \int_{-2}^{2} G(x) \frac{\sqrt{4-x^2}}{2\pi} \, dx = \frac{2}{\pi} \int_{0}^{\pi} G(2 \cos \theta) \sin^2 \theta \, d\theta. \]
Conjecture

Consider an elliptic curve E defined over $k = \mathbb{Q}$ without complex multiplication, and denote the normalized continuous complex Galois representation

$$\rho_E^{(2)} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow SU_2(\mathbb{C})$$

$$\sigma_p \mapsto g_p = \frac{1}{\sqrt{p}} \cdot \rho_E,\ell(\sigma_p)$$

For any integrable class function $\chi : SU_2(\mathbb{C}) \rightarrow \mathbb{C}$ we have the limit

$$\lim_{X \rightarrow \infty} \frac{\sum_{p \leq X} \chi(g_p)}{\sum_{p \leq X} 1} = \int_{SU_2(\mathbb{C})} \chi(g) \, d\mu.$$
How do we prove this?

- **Peter-Weyl Theorem:**

 Classify all integrable class functions $\chi : SU_2(\mathbb{C}) \to GL(V) \to \mathbb{C}$ by classifying unitary representations $\pi : SU_2(\mathbb{C}) \to GL(V)$.

- **Wiener-Ikehara Theorem:**

 Find an expression for $\lim_{X \to \infty} \frac{\sum_{p \leq X} \chi(g_p) \log p}{X}$.

- **Abel Summation Formula + Prime Number Theorem:**

 Find an expression for $\lim_{X \to \infty} \frac{\sum_{p \leq X} \chi(g_p)}{\pi(X)}$.
Theorem (Fritz Peter and Hermann Weyl, 1927)

Consider an integrable class function

\[\chi : \ SU_2(\mathbb{C}) \xrightarrow{\pi} GL(V) \xrightarrow{} \mathbb{C} \]

viewed as a matrix coefficient for a complex representation \(\pi \).

- The collection of such \(\chi \) is dense in space of continuous class functions on \(SU_2(\mathbb{C}) \).
- Any unitary representation \(\pi : SU_2(\mathbb{C}) \rightarrow GL(V) \) is the direct sum of irreducible unitary representations \(\pi_n : SU_2(\mathbb{C}) \rightarrow GL_n(\mathbb{C}) \).
- Matrix coefficients \(\chi_n \) associated to the \(\pi_n \) form an orthonormal basis for the space of (square) integrable class functions.

Writing \(\chi = \sum_n m_n \chi_n \), it suffices to show for nontrivial \(\chi_n \) that

\[
\lim_{X \to \infty} \frac{\sum_{p \leq X} \chi_n(g_p)}{\sum_{p \leq X} 1} = \int_{SU_2(\mathbb{C})} \chi_n(g) \, d\mu = 0.
\]
Symmetric Power Representations

Theorem

The only irreducible unitary representations \(\pi_n : SU_2(\mathbb{C}) \to GL_n(\mathbb{C}) \) are the symmetric powers \(\pi_n = \text{Sym}^{n-1} \), i.e.,

\[
\text{Sym}^{n-1} : \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \begin{bmatrix} \alpha^{n-1} \\ \alpha^{n-2} \beta \\ \vdots \\ \alpha \beta^{n-2} \\ \beta^{n-1} \end{bmatrix}.
\]

Corollary (Weyl Character Formula)

\[
g \sim \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \quad \Rightarrow \quad \chi_n(g) = tr(\text{Sym}^{n-1} g) = \frac{\alpha^n - \beta^n}{\alpha - \beta}.
\]
Symmetric Power Representations

Sketch of Proof: We consider the following diagram:

\[
\begin{pmatrix} +i\theta & 0 \\ 0 & -i\theta \end{pmatrix} \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ y & 0 \end{pmatrix}
\]

Any continuous representation \(\pi_n\) of the Lie group \(SU_2(\mathbb{C})\) corresponds to a continuous representation \(\Pi_n\) of the Lie algebra \(\mathfrak{su}_2(\mathbb{C})\). It suffices to compute properties of the images of the generators.

Proof #1: Compute eigenvalues and highest weights.

Proof #2: Use the orthogonality of the sine functions.
Conjecture

Consider an elliptic curve E defined over $k = \mathbb{Q}$ without complex multiplication, and denote the continuous Galois representation $\rho^{(n)}_E : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \to SU_n(\mathbb{C})$ which sends $\sigma_p \mapsto \text{Sym}^{n-1} g_p$.

For all $n \geq 2$, we have the limit

$$\lim_{X \to \infty} \frac{\sum_{p \leq X} \chi_n(g_p)}{\sum_{p \leq X} 1} = 0$$

where $\chi_n(g_p) = \text{tr} \rho^{(n)}_E(\sigma_p)$.
By the Weyl Character Formula, we know that

$$\chi_n(g_p) = \frac{\alpha_p^n - \beta_p^n}{\alpha_p - \beta_p} \quad \text{for} \quad \det[1 - \rho_E^{(2)}(\sigma_p) \ T] = (1 - \alpha_p T) (1 - \beta_p T).$$

The Sato-Tate Conjecture can be restated as follows:

Conjecture

Consider an elliptic curve E defined over $k = \mathbb{Q}$ with or without complex multiplication. For $X > 2$ and $|T| < 1$, define the generating function

$$\rho_E(X, T) = \sum_{n=1}^{\infty} \left[\frac{\sum_{p \leq X} \chi_n(g_p)}{\sum_{p \leq X} 1} \right] T^{n-1} = \frac{\sum_{p \leq X} \det[1 - \rho_E^{(2)}(\sigma_p) \ T]^{-1}}{\sum_{p \leq X} 1}.$$

Then

$$\lim_{X \to \infty} \rho_E(X, T) = 1 \quad \text{uniformly for} \quad |T| < 1.$$
$X_0(11) : \ y^2 - y = x^3 - x^2 - 10x - 20$

$$\sum_{p \leq X} \frac{\chi_n(g_p)}{\sum_{p \leq X} 1} \quad \text{for} \quad X \leq 10^6 \quad \text{and} \quad n = 2, 3, 4$$
\[X_0(11)/C : \ y^2 + xy + y = x^2 + x^2 - 305x + 7888 \]

\[
\frac{\sum_{p \leq X} \chi_n(g_p)}{\sum_{p \leq X} 1} \quad \text{for} \quad X \leq 10^6 \quad \text{and} \quad n = 2, 3, 4
\]
$X_0(27) : y^2 - y = x^3 - 7$

\[\frac{\sum_{p \leq X} \chi_n(g_p)}{\sum_{p \leq X} 1} \quad \text{for} \quad X \leq 10^6 \quad \text{and} \quad n = 2, 3, 4 \]
Is there another way to compute

\[\frac{\sum_{p \leq X} \chi_n(g_p)}{\sum_{p \leq X} 1} \]
By considering the Taylor series expansion for $\log(1 - z)$, we have

$$
\log \det \left[1 - \frac{\rho_E^{(n)}(\sigma_p)}{p^s} \right] = - \sum_{e=1}^{\infty} \frac{\text{tr } \rho_E^{(n)}(\sigma_p^e)}{e \, p^{es}} = - \sum_{e=1}^{\infty} \frac{\chi_n(g_p^e)}{e \, p^{es}}.
$$

For $\text{Re}(s) > 1$ we have $L(E, \text{Sym}^{n-1}, s) = \prod_p \det \left[1 - \rho_E^{(n)}(\sigma_p) \, p^{-s} \right]^{-1}$.

The logarithmic derivative gives the expression

$$
- \frac{L'(E, \text{Sym}^{n-1}, s)}{L(E, \text{Sym}^{n-1}, s)} = \sum_p \sum_{e=1}^{\infty} \frac{\chi_n(g_p^e) \log p}{p^{es}} = \left[\sum_p \frac{\chi_n(g_p) \log p}{p^{s}} \right] + R_E(s)
$$

in terms of the uniformly bounded error term

$$
R_E(s) = \sum_p \sum_{2 \leq e} \frac{\chi_n(g_p^e) \log p}{p^{es}} \implies |R_E(s)| \leq \frac{n}{2} \cdot \zeta(\text{Re}(2 \, s)).
$$
Theorem (Shikao Ikehara, 1931; Norbert Wiener, 1932)

Consider a function $f : [0, \infty) \to \mathbb{R}$ such that

- f is nonnegative and nondecreasing.
- The following Laplace transform is convergent for $\Re(s) > 1$:
 \[
 (\mathcal{L} f)(s) = \int_{0}^{\infty} e^{-st} f(t) \, dt.
 \]
- The function $(\mathcal{L} f)(s)$ is holomorphic for $\Re(s) \geq 1$ with at most a simple pole at $s = 1$.

Then we have the limit
\[
\lim_{t \to \infty} \frac{f(t)}{e^t} = \lim_{s \to 1} (s - 1) \cdot (\mathcal{L} f)(s).
\]
Partial Summation Formula

Corollary

Consider a Dirichlet series $L(s) = \sum_{k \geq 1} a_k \log k / k^s$, holomorphic for $\text{Re}(s) \geq 1$ with at most a simple pole at $s = 1$. Then we have the limit

$$\lim_{X \to \infty} \frac{\sum_{k \leq X} a_k}{X / \log X} = \lim_{X \to \infty} \frac{\sum_{k \leq X} a_k \log k}{X} = \lim_{s \to 1} (s-1) \cdot L(s).$$

Proof: We will use the following result a couple of times.

Lemma (Niels Henrik Abel, 1826)

Let $\{f_k\}$ and $\{g_k\}$ be two sequences of complex numbers, and denote the partial sum $F(X) = \sum_{k \leq X} f_k$. Then for any positive integer N,

$$\sum_{k=1}^{N-1} f_k g_k = F(N-1) g_N + \sum_{k=1}^{N-1} F(k) (g_k - g_{k+1}).$$
Proof of Corollary

Denote $f(t) = F(e^t)$ in terms of $f_k = a_k \log k$ and $g_k = 1/k^s$:

$$(\mathcal{L} f)(s) = \int_{0}^{\infty} e^{-st} f(t) \, dt = \lim_{N \to \infty} \left[\sum_{k=1}^{N-1} F(k) \int_{k}^{k+1} \frac{dX}{X^{s+1}} \right]$$

$$= \lim_{N \to \infty} \frac{1}{s} \left[\sum_{k=1}^{N-1} F(k) \left(\frac{1}{k^s} - \frac{1}{(k+1)^s} \right) \right]$$

$$= \lim_{N \to \infty} \frac{1}{s} \left[\sum_{k=1}^{N-1} \frac{f_k}{k^s} - \frac{F(N-1)}{N^s} \right] = \frac{L(s)}{s}.$$

Upon writing $X = e^t$, we have the limits

$$\lim_{X \to \infty} \frac{\sum_{k \leq X} f_k}{X} = \lim_{t \to \infty} \frac{f(t)}{e^t} = \lim_{s \to 1} (s-1) \cdot (\mathcal{L} f)(s) = \lim_{s \to 1} (s-1) \cdot L(s).$$
Proof of Corollary

Now denote $f_k = a_k \log k$ and $g_k = 1/\log k$:

$$
\sum_{k=2}^{N-1} a_k = \frac{F(N - 1)}{\log N} + \sum_{k=2}^{N-1} F(k) \left(\frac{1}{\log k} - \frac{1}{\log(k + 1)} \right)
$$

$$
\frac{1}{N/\log N} \left[\sum_{k=2}^{N-1} a_k \right] = \frac{F(N - 1)}{N}
$$

$$
+ \frac{1}{N/\log N} \left[\sum_{k=2}^{N-1} F(k) \left(\frac{1}{\log k} - \frac{1}{\log(k + 1)} \right) \right]
$$

We have the limits

$$
\lim_{X \to \infty} \frac{\sum_{k \leq X} a_k}{X/\log X} = \lim_{X \to \infty} \frac{\sum_{k \leq X} a_k \log k}{X} = \lim_{s \to 1} (s - 1) \cdot L(s).
$$
Example

Consider an elliptic curve E defined over $k = \mathbb{Q}$. Define the products

$$L(E, \text{Sym}^{n-1}, s) = \prod_p \det \left[1 - \rho_E^{(n)}(\sigma_p) p^{-s} \right]^{-1}$$

$$\zeta(s) = \prod_p \left[1 - p^{-s} \right]^{-1}$$

for $\text{Re}(s) > 1$.

Define the Dirichlet series as their logarithmic derivatives:

$$L_E(s) = \sum_p \frac{\chi_n(g_p) \log p}{p^s} = - \left[\frac{L'(E, \text{Sym}^{n-1}, s)}{L(E, \text{Sym}^{n-1}, s)} + R_E(s) \right]$$

$$L_{P^1}(s) = \sum_p \frac{\log p}{p^s} = - \left[\frac{\zeta'(s)}{\zeta(s)} + R_{P^1}(s) \right]$$

Assuming that $\rho_E^{(n)}$ is modular, we have the identity

$$\lim_{X \to \infty} \frac{\sum_{p \leq X} \chi_n(g_p)}{\sum_{p \leq X} 1} = \lim_{X \to \infty} \left[\frac{\sum_{p \leq X} \chi_n(g_p)}{X / \log X} \right] / \left[\frac{\sum_{p \leq X} 1}{X / \log X} \right] = 0 / 1.$$
Consider an elliptic curve \(E \) defined over \(k = \mathbb{Q} \) without complex multiplication, and denote the continuous Galois representation
\[
\rho^{(n)}_E : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to SU_n(\mathbb{C})
\]
which sends \(\sigma_p \mapsto \text{Sym}^{n-1} g_p \).

Assume \(\rho^{(n)}_E \) is modular for all \(n \geq 2 \).

- The \(L \)-series \(L(E, \text{Sym}^{n-1}, s) \) is holomorphic and nonvanishing in the region \(\text{Re}(s) \geq 1 \).
- We have the limit
\[
\lim_{X \to \infty} \frac{\sum_{p \leq X} \chi_n(g_p)}{\sum_{p \leq X} 1} = 0 \quad \text{where} \quad \chi_n(g_p) = \text{tr} \rho^{(n)}_E(\sigma_p).
\]

- In particular, the Sato-Tate conjecture holds for \(E \).
Modern Statement via L-Functions

Conjecture

Consider an elliptic curve E defined over $k = \mathbb{Q}$ without complex multiplication. Then $\rho_E^{(n)}$ is modular for all $n \geq 2$.

What’s known about this conjecture?

- n even: Proved by Laurent Clozel, Michael Harris, Nicholas Shepherd-Barron and Richard Taylor in 2006. This case suffices to prove the Sato-Tate Conjecture.
Recall that $SU_2(\mathbb{C}) \simeq U_1(\mathbb{H})$.

Conjecture (Nicholas Katz and Peter Sarnak, 1999)

Say that A is an abelian variety of dimension d. Consider a “large” normalized continuous representation

$$\rho_A^{(d)} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to U_d(\mathbb{H})$$

which sends $\sigma_p \mapsto g_p = \frac{1}{\sqrt{p}} \cdot \rho_{A,\ell}(\sigma_p)$.

The map $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to [-2d, 2d]$ which sends $\sigma_p \mapsto \text{tr} g_p$ is a distribution. That is, there is a normalized measure μ on $U_d(\mathbb{H})$ such that for any integrable class function $\chi : U_d(\mathbb{H}) \to \mathbb{C}$ we have the limit

$$\lim_{\chi \to \infty} \frac{\sum_{p \leq X} \chi(g_p)}{\sum_{p \leq X} 1} = \int_{U_d(\mathbb{H})} \chi(g) \, d\mu.$$
Questions?